Specifications typical at 25°C with forced air at 400 fpm, HV = +160 V. Current mode load = 250 μ H + 33 m Ω . Capacitor each side to ground 0.47 μ F.

	Current Mode Output (±A Peak) Pulse Duration / Off time (ms)							Voltage Mode (-V)		
Model								Output (kVA) Sine Burst Duration/ Off time (ms)		Load
	(DC)	500/500	100/100	10/20	170/1000	25/1000	4/100	(DC)	500/500	(Ω)
234P02	225	280	318	375	400	500	500	23	32	0.45 0.32

PEAK CURRENT SHUTDOWN

INPUT LIMITER

Current Mode Voltage Mode

SATURATION RESISTANCE

GAIN

Current Mode Voltage Mode

OUTPUT OFFSET

Current Mode Span Voltage Mode Span

INPUT CHARACTERISTICS

Main Input 1 Impedance Max Input Voltage Common Mode Rejection Input 2 Gain

DC OUTPUT RESISTANCE

Current Mode Voltage Mode

LOAD

Current Mode Voltage Mode Adaptable Range

CURRENT MODE RESPONSE

Small Signal Bandwidth

CURRENT SETTLING TIME

Time Reference Input Ramp Slope Ramp 0 to ±300 A

Ramp ±300 A to 0 A

520 A

Adjustable ± 30 to ± 500 A ± 15 to ± 160 V

$0.012\,\Omega$

Adjustable with programmable span 1 to 40 A/V 25.0 V/V, 28 dB

±100 mA, adjustable to zero 1.4 A 0.9 V

Differential 50 k Ω each input to ground, 25 k Ω differential ±18 V either input or differential 70 dB min, from DC to 360 Hz

Same as Input 1 Programmable

500 Ω 0.0012 Ω

250 μH + 33 m $\Omega,$ 0.47 μF each side to ground 0.45 Ω 2 μH to 2.5 H, 0.012 Ω to Open

–3 dB @ 4 kHz

End of input ramp ±300 A/600 μsec 150 μsec to within 3.0 A, 1% 250 μsec to within 1.2 A, 0.4% 350μsec to within 0.6 A, 0.2% 150 μsec to within 3.0 A, 1% 250 μsec to within 1.2 A, 0.4% 350 μsec to within 0.6 A, 0.2%

MODEL 234P02 HIGH POWER AMPLIFIER VOLTAGE MODE RESPONSE Flat to DC DC to 4 kHz, -1 dB Power Bandwidth Load Resistance 0.45 Ω -1 dB @ 10 kHz Small Signal -3 dB @ 20 kHz Open Load +0.5, -3 dB from DC to 40 kHz TOTAL HARMONIC DISTORTION **Current Mode** 200 Hz, 225 A RMS, 0.2% max Voltage Mode 200 Hz, 18 kVA, 0.3% max Load 250 μH + 33 mΩ DC DRIFT After 1 hour Current Mode Offset 4 mA/°C Self Heating Drift, 0 to ±180 A 65 mA/10 minutes maximum Scale Factor 30 ppm/°C Voltage Mode Offset 0.5 mV/°C Scale Factor 50 ppm/°C SWITCHING FREQUENCY 81 kHz Input or output Synchronization NOISE OUTPUT **Current Mode** 10 Hz to 10 kHz 1.6 mA RMS 10 Hz to 500 Hz 0.8 mA RMS Voltage Mode 10 Hz to 20 kHz 2 mV RMS 10 Hz to 500 Hz 0.5 mV RMS **RIPPLE NOISE OUTPUT** 81 kHz Each Side to Ground 2.5 V RMS max, same phase 80 V Output, Differential 2.5 V RMS max Current, 0 V Output 0.4 mA /L RMS Current, 80 V Output 4 mA/L RMS where L = load inductance in mH DC POWER SUPPLY SENSITIVITY 1.6 mA/V max **Current Mode CURRENT MONITOR** Front panel BNC and rear panel D connector ±1 V/60 A ±1% Source Resistance 0.1 Ω **VOLTAGE MONITOR** Front panel BNC and rear panel D connector ±1 V/20 V ±1% Source Resistance 940 Ω **PROGRAMMING HEADER** Sets gain and response for specific load Accessibility Rear panel D connector **REMOTE SHUTDOWN** Switch closure enables output Selectable ENABLE or INHIBIT

SWITCHES

Front panel Inhibit switch must be off Inhibit , with LED, front panel Reset, front and rear panels

Grounded or optoisolated input

LOAD PROTECTION

Voltage or Current

Shutdown

Diode Clamps

AMPLIFIER PROTECTION

Overload Current vs Time Each Heat Sink Temp Overvoltage Shutdown Undervoltage Shutdown Fan Undervoltage Shutdown

5 V CMOS STATUS OUTPUTS

+5 V CHANNEL ON NORMAL FAULT DC HOT OVER-CURRENT MODULE 1 MODULE 2 MODULE 3 Maximum Current Output

FRONT PANEL LEDS

REAR PANEL LED

POWER REQUIREMENTS

Fan Supply Required High Voltage Supply Current Quiescent Current Internal Capacitance

THERMAL REQUIREMENTS

Power Dissipation at 225 A RMS Peak Dissipation at 318 A Panel Inlet Air Temperature Storage

MECHANICAL

Size

Weight

Adjustable input limiter Soft Start Current vs time All four bridge arms open To +HV and ground

Input limiter Shutdown Shutdown 90 °C 170 V 35 V 22 V

Fault Is Low +5 V Regulated, HV is on Master and slaves enabled and operating Amplifier operates if enabled Inverted normal One or more DC voltages out of range Coil or heat sink over-temperature Too much current for too long Module 1 fault Module 2 fault Module 3 fault 10 mA each output

Same as CMOS outputs listed above.

NORMAL

+28 V @ 2 A
+50 V to +160 V
See Note 1
1.3 A
54400 μF

1600 W 3200 W -20 °C to +35 °C -30 °C to +85 °C

> 10.5" high x 19" wide x 23.4" deep; can be rack mounted 26.7 cm high x 48.3 cm wide x 59.4 cm deep 75 lb, 34.0 kg

NOTES

1. Current required to supply load I²R losses plus amplifier losses.

