

User-assembled or Pre-assembled

PIC now offers a comprehensive line of linear motion systems, either pre-assembled or as complete component sets for user assembly. Specifying these PIC products is a smart, cost-effective approach for a wide spectrum of applications. Single sourcing eliminates the need for extensive, expensive component and system design and time-consuming searches through different manufacturers' catalogs for all required designs and sizes. Because all PIC linear motion systems feature *modular design*, assembly is simplified and all parts fit together precisely.

PIC linear motion systems are available in both inch and metric sizes. They are designed from standard, in-stock, precision products, and are backed by the PIC reputation for quality and service.

System and Component Selection Information

PIC offers ten standard linear motion systems. (See next page for diagrams.) Each system is available in either inch or metric sizes and a wide range of dimensions. Choosing the system that best suits the application is normally a function of the design engineering department. The information provided in this section will enable users to select all standard PIC components required for the chosen system and application.

To select the appropriate components for a system, all loads and the magnitude and direction of forces for the application must first be determined. This information will aid in the selection of the appropriate linear bearings to carry the load and provide the desired system life. After determining the bearing load and evaluating shaft deflection, the designer can select the necessary components from the PIC standard parts listed for each system.

Many factors are involved in the selection of a linear motion system and its components. The steps usually required for such selection are as follows:

- 1. Selection of the type of system that best suits the application
- 2. Calculation of system loading and bearing selection
- 3. Determination of shaft deflection
- 4. Selection of other system components
- 5. Selection of lead screw assemblies (systems 7 through 10).

The initial selection of the type of system that suits the application is best done by the design engineer. PIC offers ten standard systems, illustrated above and described below.

- System 1 Two linear bearings mounted in housings, with an unsupported shaft through both bearings
- System 2 Two linear bearings mounted in housings, with a supported shaft through both bearings
- System 3 Two linear bearings mounted in housings, with a shaft and shaft support rail through both bearings (particularly effective when shaft deflection may be a problem)
- System 4 Four linear bearings mounted in housings, with two parallel unsupported shafts through two bearings and joined by a carriage top
- System 5 Four linear bearings mounted in housings, with two parallel supported shafts through two bearings and supports at both ends for mounting to a base and joined by a carriage top
- System 6 Four linear bearings mounted in housings, with two parallel shafts and shaft support rails through two bearings and joined by a carriage top

- System 7 Same as system 5, but with lead screw, anti-backlash nut, ball bearings and housings, coupling, and motor adaptor, mounted on a common aluminum base
- System 8 Same as system 6, but with lead screw, anti-backlash nut, ball bearings and housings, coupling, and motor adaptor, mounted on a common aluminum base
- System 9 Specialized version of System 7. Precise alignment of rails and special linear bearing housings. The key to this unit is standard. one-size shafting which allows for quick delivery at a discounted cost
- System 10 Specialized version of System 8. One-piece base plate with integral rail supports, precision machined to allow for superior specifications. The key to this unit is standard, one-size shafting which allows for quick delivery at a discounted cost

END SUPPORTS VS RAIL SUPPORT

Systems 2, 5, 7 & 9 vs. Systems 3, 6, 8 & 10

The proper diameter of the shafts in the linear motion system depends on the load that is to be carried. The shaft deflection at the center of the stroke can be estimated from the shaft selection table (table 5 or 6). If shaft deflection must be minimized, a continuous or intermittent support rail should be used.

1-2

CALCULATION OF SYSTEM LOADING AND BEARING SELECTION

LOAD CALCULATION

The main factors involved in the selection of bearing material and size are the load on a single bearing and the total travel life required. The load on a single bearing varies with the position of the center of gravity on the table top or carriage. To calculate the load on a single bearing:

- **1.** For systems 1, 2, and 3, use load calculation diagram 1 for vertical applications, and load calculation diagram 2 for horizontal applications.
- 2. For systems 4, 5, 6, 7, and 8, use load calculation diagram 3 for horizontal axis, load calculation diagram 4 for vertical axis, and load calculation diagram 5 for vertical lateral axes.

CONTINUED FROM PREVIOUS PAGE

BEARING SELECTION

Two types of bearings, self-aligning recirculating ball bearings and engineered plastic bearings, are available from PIC for use in linear motion systems. Both types are available in inch or metric sizes, and closed or open styles.

SELF-ALIGNING BEARINGS

The formulas and tables listed below will enable the designer to select the proper self-aligning bearings to meet the required life.

Basic Dynamic Load Rating and Life Expectancy

The basic dynamic load rating of a self-aligning bearing is the load which allows a rating life of 2,000,000 inches or 50,000 meters of travel, without change in magnitude or direction. The rating life of a bearing for a particular application can be calculated from the following equations:

For inch calculations,

$$L = \left[\frac{f_h}{f_w} \bullet \frac{C}{P}\right]^3 \bullet 2 \bullet 10^6$$

For metric calculations,

$$L = \left[\frac{f_h}{f_w} \bullet \frac{C}{P}\right]^3 \bullet 10^5$$

With:

- L = rating life in inches for inch calculations, in meters for metric calculations
- f_h = hardness factor (1.0); shafts are 60-65 HRC

 $f_w =$ load coefficient (refer to table 1)

- C = basic design load rating in pounds for inch calculations, in Newtons for metric calculations (refer to table 2 or 3)
- P = force in pounds for inch calculations, force in Newtons for metric calculations, determined from load calculation diagrams 1 through 5, as applicable

Rating life in hours can be calculated from the travel distance per unit of time, as follows:

$$L_{h} = \frac{L}{2 \bullet L_{s} \bullet n_{1} \bullet 60}$$

With:

- L_h = rating life in hours
- L_s = stroke length in inches for inch calculations, in meters for metric calculations
- n_1 = rating in cycles per minute

To calculate the basic dynamic load rating, use the following formulas:

For distances in inches,

$$C = \sqrt[3]{\frac{L}{2 \cdot 10^6}} \cdot \frac{f_w}{f_h} \cdot P$$

For distances in kilometers,

$$C = \sqrt[3]{\frac{L}{1 \cdot 10^5}} \cdot \frac{f_w}{f_h} \cdot P$$

Example of Calculations

(

System Type:	5
Expected Life:	20,000 hours
Number Of Bearings:	4
Weight On Carriage:	175 lb
Stroke Distance:	24 inches
Traveling Speed:	1000 in. / min
Cycle:	2 x 24 inches
Shaft:	A10L series

From the life expectancy in hours formula, the life expectancy in traveling distance is:

$$L_{h} = \frac{L}{2 L_{s} n_{1} \cdot 60}$$

$$L = L_{h} \cdot 2 \cdot L_{s} \cdot n_{1} \cdot 60$$

$$L = 20,000 \cdot 2 \cdot 24 \cdot \frac{1000}{2 \cdot 24} \cdot 60$$

$$L = 1.20 \times 10^{9} \text{ inches}$$

From the dynamic load rating formula:

$$C = \sqrt[3]{\frac{L}{2 \cdot 10^{6}}} \cdot \frac{f_{w}}{f_{h}} \cdot P$$
$$C = \sqrt[3]{\frac{1.2 \cdot 10^{9}}{2 \cdot 10^{6}}} \cdot \frac{1.5}{1.0} \cdot \frac{175}{4}$$
$$C = 553 \text{ lb}$$

The assumption is that the 175 pound load is distributed evenly between bearings; therefore, PIC system 5 with 1-inch diameter bearings having a load capacity of 850 pounds is selected.

Table 1. Load Coefficient

Operating Conditions	f _w
Operation at low speed (50 ft/min or 15 m/min or less) without impulsive shock from outside	1 - 1.5
Operation at intermediate speed (200 ft/min or 60 m/min or less) without impulsive shock	1.5 - 2.0
Operation at high speed (over 200 ft/min or 60 m/min) with impulsive shock from outside	2.0 - 3.5

Table 2. C Dynamic Load Rating of Inch Bearings

Shaft	Pating	PIC Part No.			
Diameter (inch)	(lb)	Closed	Open		
1/4	60	PFL-4	_		
3/8	95	PFL-6	—		
1/2	230	PFL-8	PFL0-8		
5/8	400	PFL-10	PFL0-10		
3/4	470	PFL-12	PFL0-12		
1	850	PFL-16	PFL0-16		
1 1/4	1230	PFL-20	PFL0-20		
1 1/2	1480	PFL-24	PFL0-24		

Table 3. C Dynamic Load Rating of Metric Bearings

Shaft Diameter (mm)	Rating (Newtons)	PIC Part No.
	CLOSED TYPE	
12 16 20 25 30 40	650 800 1500 2500 3200 5550	MPFL-12 MPFL-16 MPFL-20 MPFL-25 MPFL-30 MPFL-40
	OPEN TYPE	
12 16 20 25 30 40	750 920 1560 2600 3330 5740	MPFL0-12 MPFL0-16 MPFL0-20 MPFL0-25 MPFL0-30 MPFL0-40

ENGINEERED PLASTIC LINEAR BEARINGS

PIC self-lubricating plastic bearings are maintenance free, run quietly, are not subject to catastrophic failure, do not gall or brinell the mating shaft, and can run on "soft" noncorrosive 303 stainless steel shafting. These bearings are also capable of operation in hostile environments and are interchangeable with PIC self-aligning, recirculating bearings.

Bearing PV Rating

1

The performance capabilities of engineered plastic linear bearings are defined by the PV rating of the bearings, where P is the pressure in pounds per square inch on the projected bearing area, and V is the velocity in feet per minute of the wear surface. Maximum PV for continuous operation is 7500 PSI/FPM. To calculate PV for a particular application, divide the total load in pounds on the bearing by the effective area in square inches, and multiply by the average bearing velocity in feet per minute.

bearing releasily in re-	por minator
Example of Calculation:	
System Type:	5
Number Of Bearings:	4
Weight On Carriage:	175 lb
Load Per Bearing:	175/4 = 43.75 lb
Traveling Speed:	1000 in./min or 83.33 ft/min
Bearing Selected:	PLC-16 (1 in. = ID, 2.25 in. long = L)
Load (lb.) 4	3.75

$$P = \frac{Load (ID.)}{ID \cdot L} = \frac{43.75}{1 \cdot 2.25} = 19.44 \text{ PSI}$$

PV = 19.44 • 83.33 = 1620 PSI/FPM

Phone: 800-243-6125 • FAX: 203-758-8271 E-Mail: info@pic-design.com

1-4

DETERMINATION OF SHAFT DEFLECTION

Once the appropriate bearing has been selected to fulfill the load requirements of the application, the shaft deflection must be determined. Dimensions and tolerances of PIC shafts are listed in table 4. The required shaft diameter is dictated by the ID of the selected bearing, and the deflection can be determined from table 5 or 6 for inch or metric systems, respectively.

Example: Shaft:

Load:

Length:

Multiplier

Table 4.	Shaft	Diameters	and	Tolerances
----------	-------	-----------	-----	------------

Diameter (inch)	PIC Series	Tolerance (inch)
1/4 3/8 1/2 5/8 3/4 1 1 1 1/4	A10L-4 A10L-6 A10L-8 A10L-10 A10L-12 A10L-16 A10L-20	0.2495 / 0.2490 0.3745 / 0.3740 0.4995 / 0.4990 0.6245 / 0.6240 0.7495 / 0.7490 0.9995 / 0.9990 1.2495 / 1.2490

Table 5. Shaft Deflection Table (Inch Systems). Deflection Per Pound At Center Of Fixed Supporting Shaft.

Shaft Diameter	Length Of Unsupported Section (inches)												
(inches)	4	6	8	10	12	16	20	24	30	36	42	48	72
1/4	5.85 x 10 ⁻⁵	1.98 x 10 ⁻⁴	4.68 x 10 ⁻⁴	9.15 x 10 ⁻⁴	1.58 x 10 ⁻³	3.75 x 10 ⁻³	7.32 x 10 ⁻³	1.26 x 10 ⁻²	2.5 x 10 ⁻²				
3/8	1.20 x 10 ⁻⁵	4.05 x 10 ⁻⁵	9.63 x 10 ⁻⁵	1.79 x 10 ⁻⁴	3.25 x 10 ⁻⁴	7.68 x 10 ⁻⁴	1.43 x 10 ⁻³	2.60 x 10 ⁻³	4.83 x 10 ⁻³	8.33 x 10 ⁻³	1.32 x 10 ⁻²	1.98 x 10 ⁻²	
1/2	3.63 x 10 ⁻⁶	1.23 x 10 ⁻⁵	2.90 x 10 ⁻⁵	5.68 x 10 ⁻⁵	9.83 x 10 ⁻⁵	2.33 x 10 ⁻⁴	4.50 x 10 ⁻⁴	7.85 x 10 ⁻⁴	1.53 x 10 ⁻³	2.65 x 10 ⁻³	4.20 x 10 ⁻³	6.28 x 10 ⁻³	2.12 x 10 ⁻²
3/4	7.15 x 10 ⁻⁷	2.42 x 10 ⁻⁶	5.73 x 10 ⁻⁶	1.12 x 10 ⁻⁵	1.94 x 10 ⁻⁵	4.58 x 10 ⁻⁵	8.95 x 10 ⁻⁵	1.55 x 10 ⁻⁴	3.02 x 10 ⁻⁴	5.23 x 10 ⁻⁴	8.30 x 10 ⁻⁴	1.24 x 10 ⁻³	4.18 x 10 ⁻³
1	2.25 x 10 ⁻⁷	7.70 x 10 ⁻⁷	1.76 x 10 ⁻⁶	3.55 x 10⁻ ⁶	6.15 x 10 ⁻⁶	1.46 x 10 ⁻⁵	2.85 x 10 ⁻⁵	4.93 x 10 ⁻⁵	9.63 x 10 ⁻⁵	1.66 x 10 ⁻⁴	2.63 x 10 ⁻⁴	3.93 x 10 ⁻⁴	1.33 x 10 ⁻³
1 ¹ /4	9.30 x 10 ⁻⁸	3.13 x 10 ⁻⁷	7.45 x 10 ⁻⁷	1.45 x 10 ⁻⁶	2.50 x 10 ⁻⁶	5.95 x 10 ⁻⁶	1.16 x 10 ⁻⁵	2.01 x 10 ⁻⁵	3.93 x 10 ⁻⁵	6.78 x 10 ⁻⁵	1.08 x 10 ⁻⁴	1.61 x 10 ⁻⁴	5.43 x 10 ⁻⁴
1 ¹ /2	4.48 x 10 ⁻⁸	1.51 x 10 ⁻⁷	3.58 x 10 ⁻⁵	7.00 x 10 ⁻⁷	1.21 x 10 ⁻⁶	2.88 x 10 ⁻⁶	5.60 x 10 ⁻⁶	9.68 x 10 ⁻⁶	1.89 x 10 ⁻⁵	3.28 x 10 ⁻⁵	5.18 x 10 ⁻⁵	7.75 x 10 ⁻⁵	2.58 x 10 ⁻⁴
2	1.42 x 10 ⁻⁸	4.78 x 10 ⁻⁸	1.13 x 10 ⁻⁷	2.21 x 10 ⁻⁷	3.83 x 10 ⁻⁷	9.05 x 10 ⁻⁷	1.77 x 10 ⁻⁶	3.05 x 10 ⁻⁶	5.98 x 10 ⁻⁶	1.03 x 10 ⁻⁵	1.64 x 10 ⁻⁵	2.45 x 10 ⁻⁵	8.25 x 10 ⁻⁵

1/4 in. diameter

8 pounds

10 inches

(From Table 5): 9.15 x 10⁻⁴ inches/pound

pound

Deflection = $\frac{9.15 \times 10^{-4} \text{ inches}}{10^{-4} \text{ inches}} \times 8 \text{ pounds} = .0073 \text{ inches}$

Note:

Deflections listed above are based on system being fixed at both ends, with load in center of span.

Using the formula: Deflection = $\frac{W_s L^3}{192EI}$

- Ws = Load on shaft
- L = Length

E = Modulus of elasticity

I = Moment of inertia of cross section

Table 6. Shaft Deflection Table (Metric Systems). Deflection Per kgf At Center Of Fixed Supporting Shaft.

Shaft Diameter	Length Of Unsupported Section (mm)										
(mm)	125	250	500	750	1000	1250	1500	2000			
12	4.75 x 10 ⁻⁴	3.80 x 10 ⁻³	3.04 x 10 ⁻²	1.02 x 10 ⁻¹	2.4 x 10 ⁻¹	4.75 x 10 ⁻¹	8.21 x 10 ⁻¹	1.95			
16	1.50 x 10 ⁻⁴	1.20 x 10 ⁻³	9.62 x 10 ⁻³	3.25 x 10 ⁻²	7.7 x 10 ⁻²	1.50 x 10 ⁻¹	2.59 x 10 ⁻¹	6.16 x 10 ⁻¹			
20	6.15 x 10 ⁻⁵	4.92 x 10 ⁻⁴	3.94 x 10 ⁻³	1.33 x 10 ⁻²	3.15 x 10 ⁻²	6.15 x 10 ⁻²	1.06 x 10 ⁻¹	2.52 x 10 ⁻¹			
25	2.52 x 10 ⁻⁵	2.02 x 10 ⁻⁴	1.62 x 10 ⁻³	5.45 x 10 ⁻³	1.29 x 10 ⁻²	2.52 x 10 ⁻²	4.36 x 10 ⁻²	1.03 x 10 ⁻¹			
30	1.21 x 10 ⁻⁵	9.72 x 10 ⁻⁵	7.78 x 10 ⁻⁴	2.63 x 10 ⁻³	6.23 x 10 ⁻³	1.21 x 10 ⁻²	2.10 x 10 ⁻²	4.98 x 10 ⁻²			
40	3.84 x 10 ⁻⁶	3.07 x 10 ⁻⁵	2.45 x 10 ⁻⁴	8.30 x 10 ⁻⁴	1.96 x 10 ⁻³	3.84 x 10 ⁻³	6.64 x 10 ⁻³	1.57 x 10 ⁻²			

Example:

Shaft Load = <u>Total Load</u> Number of Shafts

0	te	
۰.		•
	0	ote

Deflections listed above are based on system being fixed at both ends, with load in center of span.

Using the formula:

Deflection = $\frac{W_{s}L^{3}}{192EI}$

Ws = Load on shaft

L = Length

E = Modulus of elasticity

I = Moment of inertia of cross section

Shaft:20 mm diameterLoad:25 kgfLength:1000 mmMultiplier
(From Table 6): $3.15 \times 10^{-2} \text{ mm}/\text{kg}$ Deflection = $\frac{3.15 \times 10^{-2} \text{ mm}}{\text{kgf}} \times 25 \text{ kgf} = 0.7875 \text{ mm}$

Phone: 800-243-6125 • FAX: 203-758-8271 E-Mail: info@pic-design.com

COMPONENT SELECTION

User Assembled +

SYSTEM 2

Bill of Material - Systems 1 and 2 / Inch

	Section A *								В*		
Shaft	Bearin	g		Bea Hou	aring using	Shaftin	g	Shaft Hanger			
Dia. (in)	Туре	Part No.	QTY	Part No.	QTY	Туре	Part No.	Part No.	QTY		
1/4	Self-Aligning	PFL-4	2	\$5.1	2	1060 Steel	A10L-4- * *	SHV-1	2		
.74	Engr. Plastic	PLC-4	2	33-1	2	303 Stainless	A11-4-* *	311A-4	2		
3/0	Self-Aligning	PFL-6	2	\$5.2	2	1060 Steel	A10L-6-**	SHV 7	2		
-78	Engr. Plastic	PLC-6	2	2 35-2	2	303 Stainless	A11-6-* *	JUN-0	2		
1/2	Self-Aligning	PFL-8	PFL-8 2	CE 2	2	1060 Steel	A10L-8- * *	CUA 0	2		
.12	Engr. Plastic	PLC-8	2	30-3	2	303 Stainless	A11-8-* *	311A-0	2		
5/0	Self-Aligning	PFL-10	2	S5-4	55.4	2 \$5.4	2	1060 Steel	A10L-10-**	SHA 10	2
5/8	Engr. Plastic	PLC-10	2		2	303 Stainless	A11-10- * *	3HA-10	2		
3/4	Self-Aligning	PFL-12	2	CE E	2	1060 Steel	A10L-12-**	CUA 12	2		
5/4	Engr. Plastic	PLC-12	2	30-0	2	303 Stainless	A11-12- * *	3HA-12	2		
1	Self-Aligning	PFL-16	2	CE 4	2	1060 Steel	A10L-16- * *	CUA 14	2		
	Engr. Plastic	PLC-16	2	30-0	2	303 Stainless	A11-16-**	3HA-10	2		
1 1/4	Self-Aligning	PFL-20	2	\$5.7	2	1060 Steel	A10L-20- * *	SHV-20	2		
1 ./4	Engr. Plastic	PLC-20	2	33-7	2	303 Stainless	A11-20- * *	5ПА-20	2		
1 1/2	Self-Aligning	PFL-24	2	55.0	2	1060 Steel	A10L-24- * *	SHV 24	2		
1 '72	Engr. Plastic	PLC-24	2	33-0	2	303 Stainless	A11-24- * *	SHA-24			

Bill of Material — Systems 1 and 2 / Metric

Section A *									B *
Shaft	Bea	ring		Bea Hou	ring sing	Shafti	ng	Shaft Hanger	
Dia.	Туре	Part No.	QTY	Part No.	QTY	Туре	Part No.	Part No.	QTY
12	Self-Aligning	MPFL-12	2	MSC 12	2	1060 Steel	MA10-12-* *	MSUA 12	2
12	Engr. Plastic	MPLC-12	2	10130-12	,-12 2	303 Stainless	MA11-12-* *	IVISHA-12	2
16	Self-Aligning	MPFL-16	2	MSC 16	2	1060 Steel	MA10-16-* *		2
10	Engr. Plastic	MPLC-16	2	10130-10	2	303 Stainless	MA11-16-* *	WISHA-10	2
20	Self-Aligning	MPFL-20	2	MSC 20	2	1060 Steel	MA10-20-* *	MSHA-20	2
20	Engr. Plastic	MPLC-20	2	10130-20	2	303 Stainless	MA11-20-* *		2
25	Self-Aligning	MPFL-25	2	MSC 2E	2	1060 Steel	MA10-25-* *		2
20	Engr. Plastic	MPLC-25	2	10130-25	2	303 Stainless	MA11-25-* *	MSHA-20	2
20	Self-Aligning	MPFL-30	2	MSC 20	2	1060 Steel	MA10-30-* *		2
30	Engr. Plastic	MPLC-30	2	10130-30	36-30 2	303 Stainless	MA11-30-* *	MSHA-30	2
10	Self-Aligning	MPFL-40	2	MSC 40	2	1060 Steel	MA10-40-* *		2
40	Engr. Plastic	MPLC-40	2	10136-40	0 2	303 Stainless MA11-40-*		IVI3NA-40	2

After selecting the type of system, the size and type of bearings, and the shaft deflection, the designer can select the required PIC components from the listed bills of materials for systems 1 through 6 that follow.

COMPONENT SELECTION SYSTEMS 1 AND 2 / INCH & METRIC NOTE —

For system 2, specify all components including shaft hangers; for system 1, specify all components except shaft hangers.

Example

System 1 Bill of Material Example:

48 inches long with self aligning recirculating bearings would consist of the following:

- 2 PFL-8 bearings
- 2 S5-3 bearing housings
- 1 A10L-8-48 shaft

System 2 Bill of Material Example:

Add 2 SHA-8 shaft hangers to the Bill of Materials for System 1.

For **PIC** assembled systems, see System Ordering Code on page 1-12

Example — System 1:

48" long, 1/2" shaft with self-aligining recirculating bearings.

Part Number = LS18-48

NOTE: * System 1 consists of Section A System 2 consists of Section A plus Section B

** Length of shaft in inches for inch systems. Length of shaft in millimeters for metric systems.

* Can be ordered pre-assembled by PIE

1-6

SYSTEM 3

Bill of Material - Systems 3 / Inch

Shaft	Bea	ring		Bear Hous	ing ing	Sh	afting	Shaft Support Rail		
Dia. (in)	Туре	Part No.	QTY	Part No.	QTY	Туре	Part No.	Part No.	QTY *	
1/2	Self-Aligning	PFLO-8	2	S5-13S	n	1060 Steel	A10-8D-**		1	
.12	Engr. Plastic	PLO-8	2	S5-13	2	303 Stainless	A11-8D-**	F 3K-0-F D	1	
5/0	Self-Aligning	PFLO-10	2	S5-14S	n	1060 Steel	A10-10D-**		1	
5/8	Engr. Plastic	PLO-10	2	S5-14	2	303 Stainless	A11-10D-* *	F3K-10-FD	1	
3/4	Self-Aligning	PFLO-12	2	S5-15S	2	1060 Steel	A10-12D-**	DCD 12 DD	1	
-/4	Engr. Plastic	PL0-12	2	S5-15	2	303 Stainless	A11-12D-* *	F 3K-12-FD	1	
1	Self-Aligning	PFLO-16	2	S5-16S	2	1060 Steel	A10-16D-**		1	
	Engr. Plastic	PLO-16	2	S5-16	2	303 Stainless	A11-16D-* *	1 31(-10-10	1	
1 1/4	Self-Aligning	PFLO-20	2	S5-17S	C	1060 Steel	A10-20D-**	DCD 20 DD	1	
1 .14	Engr. Plastic	PLO-20	2	S5-17	2	303 Stainless	A11-20D-**	F3K-20-FD	1	
1 1/2	Self-Aligning	PFLO-24	2	S5-18S	2	1060 Steel	A10-24D-**		1	
1 72	Engr. Plastic	PLO-24	2	S5-18	2	303 Stainless	A11-24D-**	F 3K-24-PD		

Bill of Material — Systems 3 / Metric

Shaft	Be	aring		Bear Hous	ing ing	5	Shafting		Shaft Support Rail		
Dia. (mm)	Туре	Part No.	QTY	Part No.	QTY	Туре	Part No.	QTY	Part No.	QTY *	
12	Self-Aligning	MPFLO-12	2	MSO 12	2	1060 Steel	MA10-12D-**	1	MDSD 12 DD	1	
12	Engr. Plastic	MPLO-12	2	10130-12	2	303 Stainless	MA11-12D-**	-	WIF SK-12-FD	I	
16	Self-Aligning	MPFLO-16	2	MS0-16	2	1060 Steel	MA10-16D-**	1	MPSR-16-PD	1	
10	Engr. Plastic	MPLO-16	2	10130-10	2	303 Stainless	MA11-16D-**	-	WF SK-10-FD	I	
20	Self-Aligning	MPFLO-20	2	MSO 20	2	1060 Steel	MA10-20D-**	1		1	
20	Engr. Plastic	MPLO-20	2	10130-20	2	303 Stainless	MA11-20D-**	-	WIF SK-20-FD	I	
25	Self-Aligning	MPFLO-25	2	MSO 25	2	1060 Steel	MA10-25D-**	1	MDSD 25 DD	1	
2.5	Engr. Plastic	MPLO-25	2	10130-23	2	303 Stainless	MA11-25D-**	-	WF SK-25-FD	I	
30	Self-Aligning	MPFLO-30	2	MSO 30	2	1060 Steel	MA10-30D-**	1		1	
30	Engr. Plastic	MPLO-30	2	10130-30	2	303 Stainless	MA11-30D-**	-	WIF SK-30-FD	I	
10	Self-Aligning	MPFLO-40	2	MSO 10	2	1060 Steel	MA10-40D-**	1		1	
-0	Engr. Plastic	MPLO-40	2	10130-40		303 Stainless	MA11-40D-**	1		'	

COMPONENT SELECTION SYSTEMS 3 / INCH & METRIC

User Assembled

Example

System 3 Bill of Material Example:

System 3, 48 inches long, with self-aligning recirculating bearings would consist of the following:

- 2 PFLO-8 bearings
- 2 S5-13S bearing housings
- 1 A10-8D-48 shaft
- 2 PSR-8-PD shaft support rails

For **PIC** assembled systems, see System Ordering Code on page 1-12

Example — System 3:

48" long, 1/2" shaft with self-aligining recirculating bearings.

Part Number = LS38-48

NOTE: * Quantity of support rail depends on shaft length: each support rail is 24 inches (610 mm) long.

> ** Length of shaft in inches for inch systems. Length of shaft in millimeters for metric systems.

⁺ Can be ordered pre-assembled by PIE

DESIGN

CONTINUED FROM PREVIOUS PAGE

User Assembled ⁺

SYSTEM 5

Bill of Material - Systems 4 and 5 / Inch

				Sec	tion A	*					Section	B
Shaft	Bea	aring		Bea Hou	aring using	s	hafting		Table Top		Shaft Hanger	
Dia.	Туре	Part No.	QTY	Part No.	QTY	Туре	Part No.	QTY	Part No.	οτγ	Part No.	рτ
1/.	Self-Aligning	PFL-4	4	CF 1	4	1060 Steel	A10L-4- * *	2		1		
./4	Engr. Plastic	PLC-4	4	30-1	4	303 Stainless	A11-4-* *	2	LIVI 1 2 3-40		ЗПА-4	4
3/0	Self-Aligning	PFL-6	4	\$5.2	4	1060 Steel	A10L-6- * *	2	LMT27 40	1		
5/8	Engr. Plastic	PLC-6	4	35-2	4	303 Stainless	A11-6-**	2	LIVI 1 37-40	1	SUN-0	4
1/2	Self-Aligning	PFL-8	4	CE 2	4	1060 Steel	A10L-8- * *	2		1	CUA 0	
.12	Engr. Plastic	PLC-8	4	30-3	4	303 Stainless	A11-8-**	2	LIVI150-55	1	SUN-0	4
5/0	Self-Aligning	PFL-10	4	CE A	4	1060 Steel	A10L-10-**	2		1	SUA 10	
\$78	Engr. Plastic	PLC-10	4	35-4	4	303 Stainless	A11-10- * *	2	LIVI102-33	'	3HA-10	4
3/4	Self-Aligning	PFL-12	4	CE E	4	1060 Steel	A10L-12-**	2	1 MT75 75	1	CUA 12	1
5/4	Engr. Plastic	PLC-12	4	30-0	4	303 Stainless	A11-12- * *	2	LIVIT/5-75		30A-12	4
1	Self-Aligning	PFL-16	4	CF /	4	1060 Steel	A10L-16-**	2	LMT100 75	1	CUA 1/	
'	Engr. Plastic	PLC-16	4	30-0	4	303 Stainless	A11-16- * *	2	LIVIT TOU-75		SHA-10	4
1 1/.	Self-Aligning	PFL-20	4	67 7		1060 Steel	A10L-20-**	2	LMT125 100	1	CUA 20	
1 '/4	Engr. Plastic	PLC-20	4	55-1	4	303 Stainless	A11-20-**	2	LIVIT 125-100		SHA-20	4
1 1/-	Self-Aligning	PFL-24	4	05.0		1060 Steel	A10L-24-**		L MT150 100	1	CUA 24	
1 1/2	Engr. Plastic	PLC-24	4	55-8	4	303 Stainless	A11-24- * *	2	LIVIT 150-130		SHA-24	4

Bill of Material — Systems 4 and 5 / Metric

				Sect	ion A	*			_		Section	В*
Shaft	B	earing		Bea Hou	ring sing		Shafting		Table Top		Shaft Hanger	
Dia. (in)	Туре	Part No.	QTY	Part No.	QTY	Туре	Part No.	ΩΤΥ	Part No.	οτγ	Part No.	QTY
10	Self-Aligning	MPFL-12	4	MSC 12	4	1060 Steel	MA10-12-**	2	MI MT12 125	1	MCUA 12	4
12	Engr. Plastic	MPLC-12	4	10130-12	4	303 Stainless	MA11-12-**	2	IVILIVIT 12-125		IVISHA-12	4
14	Self-Aligning	MPFL-16	4	MSC 14	4	1060 Steel	MA10-16-**		MI MT14 125	1	MCUA 14	4
10	Engr. Plastic	MPLC-16	4	WISC-10	4	303 Stainless	MA11-16-**	2	IVILIVIT 10-120		IVISHA-10	4
20	Self-Aligning	MPFL-20	4	MSC 20	4	1060 Steel	MA10-16-**	2	MI MT20 200	1		4
20	Engr. Plastic	MPLC-20	4	10130-20	4	303 Stainless	MA11-16-**	2			WISHA-20	4
25	Self-Aligning	MPFL-25	4	MSC 25	4	1060 Steel	MA10-20-**	2	MI MT25 200	1		4
20	Engr. Plastic	MPLC-25	4	10130-25	4	303 Stainless	MA11-20-**	2	IVILIVI125-200		IVISHA-25	4
20	Self-Aligning	MPFL-30	4	MSC 20	4	1060 Steel	MA10-30-**			1	MCUA 20	4
30	Engr. Plastic	MPLC-30	4	10130-30	4	303 Stainless	MA11-30-**	2	IVILIVI130-250		IVISHA-30	4
40	Self-Aligning	MPFL-40	4	MSC-40	4	1060 Steel	MA10-40-**		MI MT 40-320	1	MSHV 10	4
40	Engr. Plastic	MPLC-40	4	10136-40	4	303 Stainless	MA11-40-**	2	1012101140-320		IVISTIA-40	4

COMPONENT SELECTION SYSTEMS 4 AND 5 / INCH & METRIC

NOTE —

For system 5, specify all components, including shaft hangers; for system 4, specify all components except shaft hangers.

Example

System 4 Bill of Material Example:

48 inches long with self aligning recirculating bearings

- 4 PFL-8 Bearings
- 4 S5-3 Bearing Housings
- 2 A10L-8-48 Shafts
- 1 LMT50-55 Table Top

System 5 Bill of Material Example:

Add 4 SHA-8 shaft hangers to the Bill of Materials for System 4.

For **PIC** assembled systems, see System Ordering Code on page 1-12

Example — System 4:

48" long, 1/2" shaft with self-aligining recirculating bearings.

Part Number = LS48-48

NOTE: * System 4 consists of Section A System 5 consists of Section A plus Section B

> * * Length of shaft in inches for inch systems. Length of shaft in millimeters for metric systems.

+ Can be ordered pre-assembled by PIE

Phone: 800-243-6125 • FAX: 203-758-8271 E-Mail: info@pic-design.com

User Assembled ⁺

SYSTEM 6

COMPONENT SELECTION SYSTEMS 6 / INCH & METRIC

Bill of Material - Systems 6 / Inch

Shaft	Bearing			Bearing Housing		S	hafting		Shai Suppo	ft prt	Table Top	
Dia. (in)	Туре	Part No.	QTY	Part No.	QTY	Туре	Part No.	QTY	Part No.	QTY *	Part No.	QTY
1/2	Self-Aligning	PFLO-8	4	S5-13S	4	1060 Steel	A10-8D- * *	2		2	I MT50-55	1
.12	Engr. Plastic	PLO-8	4	S5-13	7	303 Stainless	A11-8D- * *	2	r SK-or D	2	LIVIT JU-JJ	1
5/0	Self-Aligning	PFLO-10	4	S5-14S	4	1060 Steel	A10-10D-**	2		2	I MT62-55	1
-78	Engr. Plastic	PLO-10	4	S5-14	4	303 Stainless	A11-10D-**	2	F3K-IUFD	2	LIVI102-55	1
3/4	Self-Aligning	PFLO-12	4	S5-15S	4	1060 Steel	A10-12D-**	2	DCD 12DD	2	I MT75 75	1
74	Engr. Plastic	PL0-12	4	S5-15	4	303 Stainless	A11-12D-**	2	F3K-12FD	2	LIVIT/5-75	1
1	Self-Aligning	PFLO-16	4	S5-16S	1	1060 Steel	A10-16D-**	2	PSR-16PD	2	LMT100-75	1
	Engr. Plastic	PLO-16	4	S5-16	-	303 Stainless	A11-16D-**	2	1 51(-101 D	2	LINIT TOO-75	
1 1/4	Self-Aligning	PFLO-20	4	S5-17S	4	1060 Steel	A10-20D-**	2		2	I MT125-100	1
1 74	Engr. Plastic	PLO-20	4	S5-17	7	303 Stainless	A11-20D-**	2	r 3K-20FD	2	LIVIT 125-100	1
1 1/2	Self-Aligning	PFLO-24	4	S5-18S	4	1060 Steel	A10-24D-**			2	I MT150, 120	1
1.72	Engr. Plastic	PL0-24	4	S5-18		303 Stainless	A11-24D-**	2	F 3K-24FD	2	LIVIT 130-130	

Bill of Material - Systems 6 / Metric

Shaft	Ве	aring	_	Bearir Housir	ng ng	s	hafting		Shaft Support		Table Top	
Dia. (mm)	Туре	Part No.	QTY	Part No.	QTY	Туре	Part No.	QTY	Part No.	QTY *	Part No.	QTY
12	Self-Aligning	MPFLO-12	4	MS0.12	4	1060 Steel	MA10-12D-**	2	MDSD_12_DD	2	MI MT12-125	1
12	Engr. Plastic	MPLO-12	4	10130-12	4	303 Stainless	MA11-12D- * *	2	WF SK-12-FD	2		
16	Self-Aligning	MPFLO-16	4	MSO 12	4	1060 Steel	MA10-16D-**	2		2	MI MT14 125	1
10	Engr. Plastic	MPLO-16	4	10130-12	4	303 Stainless	MA11-16D-**	2	MF3K-10-FD	2	IVILIVIT TO-125	1
20	Self-Aligning	MPFLO-20	4	MS0-20	4	1060 Steel	MA10-20D- * *	2	MPSP-20-PD	2	MI MT20-200	1
20	Engr. Plastic	MPLO-20	4	10130-20	4	303 Stainless	MA11-20D-**	2	WF SK-20-FD	2		' '
25	Self-Aligning	MPFLO-25	4	MS0.25	4	1060 Steel	MA10-25D- * *	2	MDCD_25_DD	2	MI MT25-200	1
23	Engr. Plastic	MPLO-25	4	10130-23	4	303 Stainless	MA11-25D-**	2	WF SK-25-FD	2		
20	Self-Aligning	MPFLO-20	4	MSO 20	4	1060 Steel	MA10-30D-**	2		2	MI MT20, 250	1
30	Engr. Plastic	MPLO-20	4	10130-30	4	303 Stainless	MA11-30D-**	2	MF3K-30-FD	2	IVILIVI130-230	1
40	Self-Aligning	MPFLO-40	4	MSO 40	4	1060 Steel	MA10-40D-**	2		2	MI MT40-320	1
40	Engr. Plastic	MPLO-40	4	10130-40	4	303 Stainless	MA11-40D- * *	2	WF3R-40-FD	2	IVILIVI140-320	1

Example

System 6 Bill of Material Example: 48 inches long with self aligning recirculating bearings as follows:

- 4 PFLO-8 Bearings
- 4 S5-13S Bearing Housings
- 2 A10-8D-48 Shafts
- 4 PSR-8-PD 48" Shaft Supports (Each PSR-8-PD is 24" long).
- 1 LMT50-55 Table Top

For **PIC** assembled systems, see System Ordering Code on page 1-12

Example — System 6:

48" long, ¹/2" shaft with self-aligining recirculating bearings.

Part Number = LS68-48

- **NOTE:** * Quantity of support rail depends on shaft length: each support rail is 24 inches (610 mm) long.
 - ** Length of shaft in inches for inch systems. Length of shaft in millimeters for metric systems.

* Can be ordered pre-assembled by PIE

SYSTEM 7 & 8 LEAD SCREW ASSEMBLY SELECTION

PIC has engineered all the components required to add a lead screw, radial bearings, coupling, motor mount, and base plate to systems 5 and 6. System 5 with the added components becomes system 7; system 6 with the added components becomes system 8.

The total length of the system is based on the desired length of travel plus Lmin, as shown on the bill of materials. The length of the base plate plus motor frame thickness is the total length of the system. Mounting holes for the base plate are based on the length.

When adding components for system 7 or 8, additional components from the series listed below must be added to the components for system 5 or 6, respectively.

Component	Quantity	PIC Series No.	NOTE:	
Motor adapter	1	LMA	System 7 —	To determine length of shafting, lead screw and base plate
Lead screw	1	ARS*		Length of shafting = Travel + B + 2X + 2WH + .062
Lead screw nut	1	ANR2		Length of lead screw = Travel + B + 2X + 2Z + LSE + Y + .062
Flange adapter	1	LMB		Length of base plate = L_{min} + Travel + 2X + .062
Flange spacer	1	SMB (system 8 only)		
Ball bearings	3	E2	System 8 —	To determine length of shafting, support rail, lead screw and b
Bearing Housing	2	S12		Length of shafting = Travel + B + 2X + .062
Coupling	1	T22A		Length of lead screw = Travel + B + 2X + 2Z + LSE + Y + .062
Base plate	1	LBP*		Length of base plate = L_{min} + Travel + 2X + .062
* Dependent on le lead screw pitch	ngth of travel	, diameter and		(Rail length is .060" shorter per side than shafting)

Note that part number series are listed above. The exact part number for a particular system depends on various dimensions of the system, shown in the dimension diagrams. Refer to the selection chart for the applicable system for the exact part numbers once the required dimensions have been determined.

DESIGN

System 7 and 8 Dimension Diagram

Phone: 800-243-6125 • FAX: 203-758-8271 E-Mail: info@pic-design.com

User Assembled ⁺

COMPONENT SELECTION SYSTEMS 7 AND 8/INCH & METRIC

NOTE —

For system 7, specify all components listed for system 5 plus the required components from the list below; for system 8, specify all components listed for system 6 plus the required components from the list below.

Dimensions —	Systems	7	&	8	
--------------	---------	---	---	---	--

Nominal Shaft Diameter (Inches)	A	В	CD	D	HI	HH	HR	WH	WS	x	Ŷ	Z	L _{Min.}	т	WA	LSE
1/2	5.50	5.50	3.625	5.625	1.375	2.375	2.500	.625	2.031	.094	.250	.051	8.156	.375	.438	.875
⁵ / 8	5.50	5.50	3.625	6.125	1.375	2.512	2.637	.688	2.063	.150	.250	.083	8.250	.375	.438	.875
³ / 4	7.50	7.50	5.500	8.000	2.000	3.125	3.375	.750	2.281	.188	.250	.114	10.531	.500	.438	.875
1	7.50	7.50	5.000	7.625	2.000	3.500	3.750	1.000	2.406	.250	.250	.114	10.906	.500	.438	.875
1 ¹ /4	10.00	10.00	7.250	10.250	2.750	4.562	4.937	1.125	3.125	.253	.375	.188	14.250	.750	.625	1.250
1 ¹ /2	13.00	13.00	9.25	13.000	2.750	5.125	5.625	1.250	3.188	.375	.375	.251	17.438	.750	.625	1.250

Bill of Material — Systems 7 & 8

Nominal Shaft Diamter (Inches)	Motor Frame Adaptor	Lead Screw Diameter	Lead Screw Journal Diameter	Flange Adaptor	Flange Spacer*	Ball Bearings	Bearing Housing	Coupling	Maximum Travel (Inches)
1/2	LM23-6	3/8	.1872	LMB-6	SMB-6	E2-6	S12-6	T22A-2518D	48**
⁵ / 8	LM23-6	3/8	.1872	LMB-6	SMB-6	E2-6	S12-6	T22A-2518D	48**
³ / 4	LM23-8	1/2	.2497	LMB-8	SMB-8	E2-9	S12-8	T22A-25	48
1	LM23-8	1/2	.2497	LMB-8	SMB-8	E2-9	S12-8	T22A-25	48
1 ¹ /4	LM34-10	5/8	.3747	LMB-10	SMB-10	E2-15	S12-10	T22A-37	48
1 ¹ /2	LM34-10	5/8	.3747	LMB-10	SMB-10	E2-15	S12-10	T22A-37	48

* Flange space — used on System 8 ** System 7 max travel 20"

* Systems 7 & 8 can be ordered pre-assembled by **PIE**. See next page for ordering information.

Systems 7 & 8 can be ordered pre-assembled by PIE.

Use the information below to develop a proper system ordering code.

System Ordering Code

System 1 through 6 ordering code is as follows:

CONTINUED FROM PREVIOUS PAGE

System Ordering Code System 7 and 8 ordering code is as follows:

Code = the number of 1/16" diameter

Lead Screw Diameter	Lead	Code	Ref. Shaft Dia.
3/8"	.050 .0625 .100 .125 .200 .250 .500 1.00 1.25	21 22 23 24 25 26 27 28 29	¹ /2" and ⁵ /8"
¹ /2"	.100 .200	41 42	³ /4" & 1"
5/8"	.100 .125 .200	51 52 53	1 ¹ /4" & 1 ¹ /2"
8 mm	2 mm	61	¹ /2" & ⁵ /8"
10 mm	2 mm 6 mm	71 72	³ /4" & 1"
14 mm	4 mm	81	1 ¹ /4" & 1 ¹ /2"

XX

For Inch: Code = the number of 1/16" diameter For Metric: Code = the diameter in millimeters

System 7 and 8 Bills of Material Examples

System 7 (Inch)

Linear system assembly P/N LS78-12-27 Travel: 12" Bearing Shaft Diameter: ¹/2" Diameter / lead acme lead screw: ³/8" diameter with 0.500 lead

Complete Bill of Material — From system 5:

Description	Quantity	Part Number
Bearing - self aligning	4	PFL-8
Linear bearing housing	4	S5-3
Shaft 1060 steel	2	A10L-8-19.1
Shaft hanger	4	SHA-8
Carriage Top	1	LMT50-55
Additional Parts		
Motor adaptor	1	LMA23-6
Lead screw (see note)	1	ARS4X3708-18.977
Lead screw nut	1	ANR24-3708
Flange adaptor	1	LMB-6
Ball bearings	3	E2-6
Bearing housing	2	SI2-6
Coupling	1	T22A-2518D
Base plate	1	LBP8-20.406

LEAD SCREW

System 8 (Inch)

M =

metric

(Consult

Factory)

Blank

inch

LS = Linear

system

Linear system assembly P/N LS8 8-18-23 Travel: 18" Bearing shaft diameter: ¹/2" Diameter / lead acme lead screw: ³/s" diameter with .100 lead

Complete Bill of Material — From System 6:

Description	Quantity	Part Number
Bearing self-aligning	4	PFL0-8
Linear bearing housing	4	S5-13S
Shaft 1060 steel	2	A10L-8D-23.75
Shaft support rail	2	PSR8-PD
Carriage Top	1	LMT50-55
Additional Parts		
Motor adaptor	1	LMA23-6
Lead screw (see note)	1	ARS1X3710-24.977
Lead screw nut	1	ANL21-3710
Flange adaptor	1	LMB-6
Flange spacer	1	SMB-6
Ball bearings	3	E2-6
Bearing housing	2	S12-6
Coupling	1	T22A-2518D
Base plate	1	LBP8-26.406

LEAD SCREW

DESIGN

NOTE: Lead screws shown in examples are for PIC assembled systems. Part numbers are less journals. Must advise at time of inquiry if journals are required.

Phone: 800-243-6125 • FAX: 203-758-8271 E-Mail: info@pic-design.com