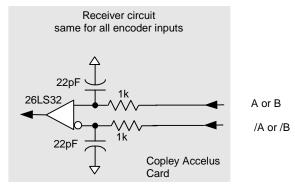


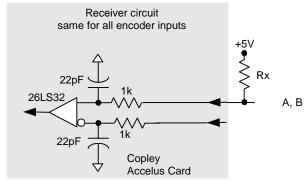
Single-Ended Encoder with Accleus Card

Introduction


Encoder Sensor

Quadrature encoders typically provide two square waves (phase A and B) that are 90° apart.

The AccelusTM Digital amplifier can determine the direction of travel from the state of the encoder signals. The AccelusTM will use the encoder to perform sinusoidal commutation and, when in velocity and position mode, control the motor.


The encoder receiver circuit for the AccelusTM Card will receive the quadrature encoder signals: phase A, phase B. See figure below. This circuit is designed to work with differential signals that reduce the risk of count errors.

Differential receiver for differential encoder.

Note: A single-ended encoder *will not operate properly* with a differential receiver unless a pull-up resistor is used.

To use a single-ended encoder, 2 pull-up resistor Rx are required. See diagram below. The value of Rx depends on the current sinking capability of the encoder output circuit. Typically a 2.2K Ohms resistor to +5V on the A and B encoder inputs is used.

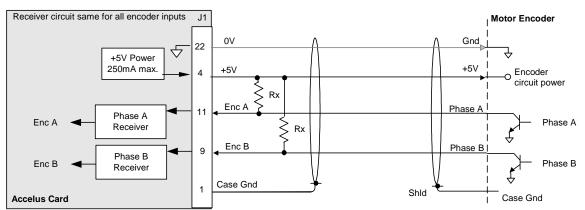
External resistor used to receive single ended encoder.

Instructions

Connect Encoder A to Encoder input A on J1-11.

Connect Encoder B to Encoder input B on J1-9.

Connect Encoder power to +5V on J1-4.


Connect Encoder ground to GND on J1-22.

Connect Encoder shield (if available) to GND on J1-1

Connect Rx Resistor from input A on J1-11 to +5V on J1-4. Connect Rx Resistor from input B on J1-9 to +5V on J1-4.

The Copley Development kit will have this resistor as part of the mounting board. A customer mounting board should have this resistor as part of the design, if a single ended encoder is used.

Connections Diagram for Single-Ended Encoder

